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The anomalous relaxation in normal and supercooled liquids is studied by molecular-dynamics~MD! simu-
lations of a simple Lennard-Jones binary mixture for various temperatures and wave numbers. Our MD
simulations show that the anomalous structural relaxation of a stretched-exponential type appears not only in
a supercooled liquid region but also in a normal liquid region. This fact indicates that the anomalous relaxation
is not a feature characteristic of supercooled liquids alone, but rather it is a phenomenon to be found in broader
categories of disordered systems.@S1063-651X~96!05507-9#

PACS number~s!: 61.25.2f, 61.20.Ja, 61.20.Lc

I. INTRODUCTION

The anomalous relaxation, which was discovered about
150 years ago@1#, is a long-standing problem. Recently,
much attention has been given to this problem since state-of-
the-art experimental techniques have made it possible to ob-
serve the anomalous relaxation in a wide variety of phenom-
ena such as the structural relaxation in supercooled liquids
@2# and the dielectric relaxation in amorphous materials
@3–5#.

In the anomalous relaxation phenomena, the relaxation
functions are expressed by nonexponential functions. Two
types of empirical laws have been widely used to fit the
experimental data concerning the anomalous relaxation:~i!
the Cole-Cole form of the complex susceptibility in the fre-
quency domain@6# and~ii ! the stretched-exponential form of
the relaxation function in the time domain@1,7#. From the
fact that a large number of experimental data are described
by a few simple empirical laws, it is expected that there must
be common microscopic mechanisms in the anomalous re-
laxation observed in quite different kinds of phenomena.

With a view to clarifying microscopic mechanisms of the
anomalous relaxation, we study the structural relaxation in
normal and supercooled liquids. In particular, it is a purpose
of this article to ascertain whether the anomalous structural
relaxation is characteristic of the supercooled liquids which
are in a metastable state, or it is universal in liquids in gen-
eral irrespective of their thermodynamic states. To this end,
we carry out the molecular-dynamics~MD! simulations of a
Lennard-Jones binary mixture and study~1! the long-time
behavior of the self-part of the number density autocorrela-
tion function, which is the relaxation function in this case;
and ~2! the low-frequency behavior of the imaginary part of
the self-part of the complex susceptibility at various tem-
peratures and wave numbers systematically. As a result of
our MD simulations, it is found that the anomalous structural
relaxation appears even above the melting temperatureTm .
In other words, the anomalous structural relaxation is shown
to be a general phenomenon in liquids.

This paper is organized as follows: In Sec. II, we describe

our model and method in detail. Our results obtained by MD
simulations are presented in Sec. III. In Sec. IV, summary
and discussions are given.

II. MODEL AND METHOD

The method of molecular-dynamics~MD! simulations is
very useful in investigating not only the static properties but
also the dynamical properties of liquids. This technique can
yield a variety of correlation functions and single-particle
motions in detail. Much work has been done in relation to
the liquid-glass transition and some recent work can be
found in Refs.@8–14#.

We consider a binary mixture composed ofN1 atoms of
massm1 and diameters15s andN2 atoms of massm2 and
diameters2 . Two atoms separated by distancer are sup-
posed to interact through the Lennard-Jones potential

vab~r !54eF S sab

r D 122S sab

r D 6G , ~1!

wherea andb are species indexes and equal to 1 or 2, while
e and sab are parameters with dimensions of energy and
length, respectively. The parametersab is assumed to satisfy

sab5
1

2
~sa1sb!. ~2!

In this paper, we chooseN2 /N151.0, m2 /m152.0, and
s2 /s151.2. It is known that the system with these param-
eters bypasses crystallization, that is, the system stays in a
supercooled state or a glassy state for a long time at a given
temperature. As for the total number of particlesN, we
chooseN5500 in cooling liquids. The microscopic time
scale is chosen to be

t5Sm1s
2

48e D 1/2. ~3!

When species 1 is assumed to be argon, we find
t53.112310213 s by substituting parameters appropriate for
argon (e/kB5119.8 K, kB being the Boltzmann constant,
m156.63310226 kg ands53.405 Å! into Eq.~3!. The value
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of t is comparable with the inverse of the Einstein fre-
quency. In what follows, the temperatureT is scaled by
e/kB .

We systematically study the normal and supercooled liq-
uids by constant-pressure MD simulations~Andersen’s
method@15#! in a cubic cell with periodic boundary condi-
tions. We use the velocity version of the Verlet algorithm
@16# and we take the time stepDt/t50.07.

III. RESULTS

A. Crystal structure

In this subsection, we derive the melting temperatureTm
and the glass-transition temperatureTg of our Lennard-Jones
system. In order to determineTm , it is necessary to identify
the crystal structure belowTm . In a one-component
Lennard-Jones system, the crystal structure is known to be
the face-centered cubic~fcc! structure. On the other hand, in
a binary Lennard-Jones system, the type of the crystal struc-
ture depends on the ratio of diameterss2 /s1 . Since we have
chosen the values ofs2 /s1 andm2 /m1 so that crystalliza-
tion is bypassed in a binary system, the crystal structure is
not easily obtained by cooling liquids. As another way to
determine a possible crystal structure of our binary Lennard-
Jones mixture, we perform MD simulations starting from the
following three initial configurations at a low enough tem-
perature, say atT50.0835; that is,~i! fcc structure obtained
by placing alternatively two kinds of layers composed of
face-centered squares,~ii ! cesium chloride~CsCl! structure,
and~iii ! sodium chloride~NaCl! structure. Judging from the
fact that the melting temperatureTm for a one-component
Lennard-Jones system of an fcc structure is about 0.7,
T50.0835 is considered to below in our binary system as
well. ~It is worth noting here that, when parameterss and
e for a one-component Lennard-Jones system are taken to be
appropriate for argon,Tm in the reduced scale corresponds to
Tm584 K while T50.0835 toT510 K.! The total number
of particles in each structure is~i! N5500, ~ii ! 432, and~iii !
512. In Figs. 1~a!, 1~b!, and 1~c!, the total pair distribution
functionsg(r ) versus interatomic distancer are shown by
solid curves for the configurations resulting from these three
MD simulations, respectively, while the broken curve in Fig.
1~c! corresponds to a glass obtained by quenching a liquid
from T51.0017 toT50.0835. ~Note thatT51.0017 in the
reduced scale corresponds toT5120 K in the case of argon,
the temperature being considered to be high enough for our
purpose when compared toTm584 K.! The arrows in Figs.
1~a!, 1~b!, and 1~c!, respectively, indicate the positions of the
first eight nearest neighbors in an fcc lattice@Fig. 1~a!#, the
first nine nearest neighbors in a CsCl lattice@Fig. 1~b!#, and
the first nine nearest neighbors in an NaCl lattice@Fig. 1~c!#.
From Figs. 1~a! and 1~b!, it is found that the crystal struc-
tures of the fcc type and the CsCl type are stable. On the
other hand, Fig. 1~c! ascertains that the NaCl structure is not
stable and that the structure obtained from our MD simula-
tions is more like a glass than like a crystal. In this way, the
study ofg(r ) suggests that either an fcc or a CsCl structure
is a possible crystalline configuration for our model system.
The next step, therefore, is to determine which of these two
configurations is more preferable. For this purpose, we cal-

culate the potential energyEpot/N and volumeV/N per par-
ticle at T50.0835. The results are listed in Table I for the
above-described two crystalline configurations as well as for
a glass. From these results, it is obvious that the CsCl struc-
ture is most plausible out of the three configurations studied
here.

FIG. 1. The pair distribution functionsg(r ) for the configura-
tions resulting from the MD simulations starting from the following
three initial configurations:~a! the fcc structure,~b! the CsCl struc-
ture and~c! the NaCl structure atT50.0835. The pair distribution
functiong(r ) for a glass is also presented in~c!. The arrows in~a!,
~b!, and~c! show the positions of the first eight nearest neighbors in
an fcc lattice, the first nine nearest neighbors in a CsCl lattice, and
the first nine nearest neighbors in an NaCl lattice, respectively. In
~b! and ~c!, the filled arrows represent the contributions from the
partial distribution functionsg11(r ) andg22(r ) and the open arrows
denote the contributions from the partial distribution functions
g12(r ) andg21(r ).
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Now that a CsCl configuration is chosen as the crystal
structure of our system, our task is to determineTm andTg of
our system. Towards this end, we first heat this system from
T50.0835 toT51.0017 ~liquid! with the average heating
rate 3.131010 Ks21. The specific volumeV/N versusT for
this heating process is plotted by filled circles in Fig. 2. From
this figure, we see that the melting temperature is located
aroundTm.0.70.

The liquid system atT51.0017 obtained as a result of the
above-described heating process is then cooled down to
T50.0835 with the average cooling rate 1.03109 Ks21.
The open circles in Fig. 2 show the specific volume versus
temperature in this cooling process. The glass-transition tem-
perature is roughly estimated from the value at the intersec-
tion of the extrapolations both from the typical liquidlike and
solidlike regions. The glass-transition temperatureTg thus
determined isTg.0.39.

B. Structural relaxation

In this subsection, we clarify whether the structural relax-
ation is anomalous or not in the normal liquid state above the
melting temperature by analyzing our MD results. We calcu-
late the self-part of the number density autocorrelation func-
tionsFs

(a)(k,t) and the imaginary part of the self-part of the
complex susceptibilitiesxs

(a)9(k,v) relevant to the structural
relaxation. These physical quantities are defined as follows:

F s
~a!~k,t !5

1

Na
(
j51

Na

^exp$ ik•@r j
a~ t !2r j

a~0!#%&, ~4!

xs
~a!9~k,v!5vE

0

`

Fs
~a!~k,t !cos~vt !dt, ~5!

wherer j
a(t) denotes the position vector of particlej of spe-

ciesa at time t, k is a wave number vector andk[uku is a
wave number. The relaxation functionFs

(a)(k,t) contains in-
formation of the self-diffusion of particles.

Let us first study the behavior of a liquid at a temperature
T51.0017 which is as high asT.1.5Tm . The reason why
we start from a liquid at this temperature is that we like to
make it sure that a liquid isnormalat high enough tempera-
ture. In Fig. 3~a!, the imaginary parts of the self-parts of the
complex susceptibilityxs

(1)9(k,v) are shown for various
wave numbers at this temperature. Note that at this tempera-
ture, the system is in an equilibrium state. From this figure,
we find that the frequency of the peak becomes higher as the
wave number becomes large. We show in Fig. 3~b!
xs
(1)9(k,v)/xs

(1)9(k,vmax) as a function ofv/vmax, where
vmax is the frequency at whichxs

(1)9(k,v) has a peak. It
is readily seen from this figure that scaling around
v5vmax holds at small wave numbers and the structural
relaxation is of the normal Debye type: i.e.,xs

(1)9(k,v)/

TABLE I. List of values of the potential energy per particle
Epot /N and the volume per particleV/N atT50.0835 for two crys-
talline configurations resulting from the MD simulations and for a
glass obtained by cooling liquids.

Configuration Epot /N V/N

fcc structure -7.778 1.321
CsCl structure -8.141 1.285
glass -7.922 1.319

FIG. 2. The specific volumeV/N versus temperatureT in heat-
ing ~filled circles! and in cooling~open circles!. The solid lines
represent the extrapolations in order to determine the glass transi-
tion temperatureTg . The melting temperature isTm.0.70 and the
glass transition temperature isTg.0.39.

FIG. 3. ~a! The imaginary part of the self-part of the complex
susceptibilityxs

(1)9(k,v) for various wave numbers atT51.0017.
~b!xs

(1)9(k,v)/xs
(1)9(k,vmax) versusv/vmax for various wave num-

bers atT51.0017. The solid curve represents the Debye suscepti-
bility.

646 54SUSUMU FUJIWARA AND FUMIKO YONEZAWA



xs
(1)9(k,vmax!5Im @(12 iv/vmax!

21# ~solid curve in this
figure! as is normally expected for a normal liquid above
Tm . On the other hand, at large wave numbers, the normal-
ized susceptibilitiesxs

(1)9(k,v)/xs
(1)9(k,vmax) at high fre-

quencies are located under the solid curve. This fact indicates
that the structural relaxation at high frequencies isfasterthan
the Debye relaxation, and consequently a liquid is ‘‘not per-
fectly normal’’ even at a high enough temperature.

In the next place, let us study the behavior of a liquid at
temperatures lower thanT51.0017. The imaginary parts of
the self-part of the complex susceptibilityxs

(1)9(k,v) are
shown in Fig. 4~a! for various temperatures at the wave num-

berks56.48, which corresponds to the wave number of the
main peak of the static structure factor. From this figure, we
can see the following facts:~a! At high temperature
T51.0017,xs

(1)9(k,v) has only one peak at the microscopic
frequency (vt'1). ~b! As the temperature is reduced, the
width of the peak becomes broader towards the low-
frequency side even aboveTm , which suggests the appear-
ance of an additional peak at the low-frequency side.~c!
When the temperature is reduced beyondT.0.5, an addi-
tional peak appears at the low-frequency side. The appear-
ance of ‘‘the low-frequency peak’’ can be clearly seen by
subtracting the Debye peak centered around the microscopic
frequencyVk

(1) from the calculatedxs
(1)9(k,v) @Figs. 4~b!

and 4~c!#, where

Vk
~1!5kS kBTm1

D 1/2. ~6!

These facts suggest that the structural relaxation becomes
anomalous even aboveTm . We also find from Figs. 4~b! and
4~c! that the frequency at the maximum position of ‘‘the
low-frequency peak’’ decreases rather drastically as the tem-
perature decreases while the frequencyVk

(1) at the maximum
position of the Debye susceptibility has a relatively weak
dependence on the temperature as defined by Eq.~6!. A re-
markable temperature dependence is one of the characteristic
features of the so-calleda peak observed in supercooled
liquids. Therefore, it is expected that the peak at the low-
frequency side@broken curves in Figs. 4~b! and 4~c!# corre-
sponds to thea peak.

In order to study the structural relaxation in the low-
frequency region or in the long-time region in more detail,
we analyze the self-parts of the number density autocorrela-
tion functions. The self-parts of the number density autocor-
relation functionFs

(1)(k,t) are shown in Fig. 5 for various
temperatures and wave numbers. In the time region
(t/t.3.5) longer than the microscopic time scale (t/t'1),
the self-partsFs

(1)(k,t) are well fitted by the stretched-
exponential function

Fs
~1!~k,t !;A~1!expF2S t

t~1!D b~1!G ~ t/t.1!, ~7!

wheret (1) is the relaxation time andb (1) is the stretching
parameter which represents the degree of stretching of the
relaxation. The fact that the long-time parts ofFs

(1)(k,t) are
fitted by the stretched-exponential function is another char-
acteristic feature of thea peak. Thus the relaxation in the
long-time region or in the low-frequency region is ascer-
tained to be thea peak as is expected in the above.

We show the relaxation time as a function of the inverse
temperature in Fig. 6. In Figs. 7 and 8 are shown the stretch-
ing parameters as a function of temperature and as a function
of the wave number, respectively. As seen in Fig. 6, Arrhen-
ius behavior is observed in the temperature region above
Tm . From this fact, we can say that a liquid aboveTm is
normal not only in the ordinary thermodynamical sense but
also in the sense that the relaxation time obeys a normal
Arrhenius law. On the other hand, from Figs. 7 and 8, we
find that~a! at small wave numbers (ks<2.16), the stretch-

FIG. 4. ~a! The imaginary part of the self-part of the complex
susceptibility xs

(1)9(k,v) for various temperatures atks56.48
which is the wave number of the main peak of the static structure
factor. ~b! At T50.5843 and ~c! at T50.5008 ~both for
ks56.48), the appearance of thea peak ~the broken curve! is
ascertained by subtracting the Debye peak around the microscopic
frequencyVk

(1) ~the dotted curve! from the total susceptibility
xs
(1)9(k,v) ~the solid curve! obtained from our simulations.
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ing parameterb (1) is almost unity,~b! at large wave numbers
(ks>2.16), b (1) is less than unity even aboveTm , ~c! at
large wave numbers (ks>2.16),b (1) decreases as the tem-
perature decreases at a given wave number and as the wave
number increases at a given temperature. This fact~c! indi-
cates that the structural relaxation becomes slower as the
temperature decreases or as the wave number increases. The
stretching parametersb (1) at ks56.48, where the imaginary
partsxs

(1)9(k,v) are shown for several temperatures in Fig.
4, are shown by filled diamonds in Fig. 7. It is clearly found
that the stretching parameterb (1) is found to be less than
unity even at higher temperatures than the melting tempera-
tureTm .

IV. SUMMARY AND DISCUSSION

In this article, we have studied the structural relaxation in
many-body systems such as a binary Lennard-Jones system
by MD simulations.

~i! The crystal structure of our binary Lennard-Jones sys-
tem is a CsCl structure. The melting temperature is
Tm.0.70 and the glass-transition temperatureTg.0.39.

~ii ! At a temperatureT.1.5Tm which is considered to be
high enough, the imaginary part of the self-parts of the com-
plex susceptibilityxs

(1)9(k,v) versus frequencyv indicates
that there exist deviations from the normal Debye relaxation
at high frequencies.

~iii ! In a liquid at temperatureT between Tm and

FIG. 5. The self-part of the number density autocorrelation functions scaled byA(1), Fs
(1)(k,t)/A(1), for various wave numbers at~a!

T51.0017, ~b! T50.8347, ~c! T50.6678, and~d! T50.5008. The solid curves represent the curves fitted by the stretched-exponential
function @Eq.~ 7!#.

FIG. 6. The relaxation timet (1) versus inverse temperature
1/T for various wave numbers.

FIG. 7. The stretching parameterb (1) versus temperatureT for
various wave numbers.
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1.5Tm , the structural relaxation in the long-time region is of
the stretched-exponential type in spite of the fact that the
system has several features characteristic of normal liquids
such as the Arrhenius behavior of the relaxation time and the
thermodynamic behavior concerning the equations of state.

~iv! In the temperature region as described in~iii !, i.e., in
the regionTm,T,1.5Tm , the stretching parameterb de-
creases as the temperature reduces and as the wave number
increases.

The results similar to our results presented in Fig. 7 have
also been indicated experimentally in the structural relax-
ation in an ionic glass former@Ca(NO3)2#0.4@K(NO3)#0.6
~CKN! ~Fig. 3 in Ref.@17#! and in the mechanical relaxation
in CKN ~Fig. 6 in Ref. @18#!; that is, we can read that the
stretching parameter is less than unity even above the melt-
ing temperatureTm when we look at these experimental re-
sults closely. Moreover, in Ref.@18#, Campbellet al.suggest
that another characteristic temperature, which is identified
with the Griffith temperature in the spin-glass context,

should exist for which the relaxation becomes exponential.
In our MD simulations, this characteristic temperature is
found to exist and increase according to the increase of the
wave number as shown in Figs. 7 and 8. The fact that the
anomalous relaxation appears even in the so-called normal
liquid was suggested experimentally by Ngai and Strom@19#.
In this paper, we have confirmed this fact by means of the
systematic study by the computer simulations.

Here we discuss the finite-size effect. The linear dimen-
sionR corresponding to the smallest wave number we stud-
ied, i.e.,ks51.08, isR/s52p/ks;5.8, which is the larg-
est linear dimension we are concerned with in our
simulations. On the other hand, the linear system sizeV1/3 in
the temperature region betweenT50.5 to T51.0 is
V1/3s59.0;9.9. Consequently, the finite-size effect is ex-
pected to be very small sinceR,V1/3.

A most remarkable conclusion drawn from our study is
that the structural relaxation becomes anomalous not only in
supercooled liquids but also in the normal liquid region. The
conclusion achieved in this article indicates that the anoma-
lous structural relaxation is closely related to the disordered
nature in a system.

Before concluding this paper, let us mention that, as a
model of the structural relaxation, we previously proposed a
one-body picture: i.e., ‘‘random walks in restricted geom-
etry’’ and made detailed study of the relation between the
anomalous relaxation and the nature of disorder in systems
with restricted geometry@20–22#. Note also that Flesselles
and Botet have investigated the stretched-exponential
anomalous relaxation analytically through random walks on
a percolating network, modelizing the available phase space
of a disordered material@23#.
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FIG. 8. The stretching parameterb (1) versus wave numberk for
various temperatures.
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