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Molecular dynamics simulations of anomalous relaxation in a binary Lennard-Jones system

Susumu Fujiwar%and Fumiko Yonezawa
Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan
(Received 20 March 1995

The anomalous relaxation in normal and supercooled liquids is studied by molecular-dy(giicsimu-
lations of a simple Lennard-Jones binary mixture for various temperatures and wave numbers. Our MD
simulations show that the anomalous structural relaxation of a stretched-exponential type appears not only in
a supercooled liquid region but also in a normal liquid region. This fact indicates that the anomalous relaxation
is not a feature characteristic of supercooled liquids alone, but rather it is a phenomenon to be found in broader
categories of disordered systerh$1063-651X96)05507-9

PACS numbses): 61.25-f, 61.20.Ja, 61.20.Lc

I. INTRODUCTION our model and method in detail. Our results obtained by MD
simulations are presented in Sec. Ill. In Sec. IV, summary
The anomalous relaxation, which was discovered abougnd discussions are given.
150 years agdl], is a long-standing problem. Recently,
much attention has been given to this problem since state-of- Il. MODEL AND METHOD
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the-art experimental techniques have made it possible to ob-
serve the anomalous relaxation in a wide variety of phenom- The method of molecular-dynami¢MD) simulations is

ena such as the structural relaxation in supercooled liquidgery useful in investigating not only the static properties but
[2] and the dielectric relaxation in amorphous materials?lso the dynamical properties of liquids. This technique can
[3-5]. yield a variety of correlation functions and single-particle

In the anomalous relaxation phenomena, the relaxatiofnotions in detail. Much work has been done in relation to
functions are expressed by nonexponential functions. Twéhe liquid-glass transition and some recent work can be
types of empirical laws have been widely used to fit thefound in Refs[8-14].
experimental data concerning the anomalous relaxatiopn: ~ We consider a binary mixture composedMf atoms of
the Cole-Cole form of the complex susceptibility in the fre- massm; and diametetr; = o andN, atoms of massn, and
quency domaifi6] and(ii) the stretched-exponential form of diametero,. Two atoms separated by distanceare sup-
the relaxation function in the time domajf,7]. From the posed to interact through the Lennard-Jones potential
fact that a large number of experimental data are described
by a few simple empirical laws, it is expected that there must Oap 12
be common microscopic mechanisms in the anomalous re- r B
laxation observed in quite different kinds of phenomena.

With a view to clarifying microscopic mechanisms of the wherea and g are species indexes and equal to 1 or 2, while
anomalous relaxation, we study the structural relaxation ine gnd 0.p are parameters with dimensions of energy and
normal and supercooled liquids. In particular, it is & purposgength, respectively. The parametey; is assumed to satisfy
of this article to ascertain whether the anomalous structural
relaxation is characteristic of the supercooled liquids which 1
are in a metastable state, or it is universal in liquids in gen- aaﬁzz(anr Tp). (2
eral irrespective of their thermodynamic states. To this end,
we carry out the molecular-dynami@sID) simulations of a .

Lennargll-\]ones binary mixtuye and study the long-time In this paper, we choosél,/N,=1.0, m,/m;=2.0, and
behavior of the self-part of the number density autocorrela?2/?1=1.2. It is known that the system with these param-
tion function, which is the relaxation function in this case; eters bypasses crystallization, that is, the system stays in a
and (2) the low-frequency behavior of the imaginary part of supercooled state or a glassy state for a long tl_me at a given
the self-part of the complex susceptibility at various tem-Lemperature. AS_ for th_e toFaI _number of_partlclu§ we
peratures and wave numbers systematically. As a result 61}1005_6'\':500 in_cooling liquids. The microscopic time
our MD simulations, it is found that the anomalous structuralScale Is chosen to be
relaxation appears even above the melting temperatyre
In other words, the anomalous structural relaxation is shown _
to be a general phenomenon in liquids.
This paper is organized as follows: In Sec. Il, we describe
When species 1 is assumed to be argon, we find
7=3.112x< 10 3s by substituting parameters appropriate for
“Present address: Theory and Computer Simulation Center, Na&rgon (/kg=119.8 K, kg being the Boltzmann constant,
tional Institute for Fusion Science, Nagoya 464-01, Japan. m;=6.63x 10 ?° kg ando = 3.405 A) into Eq(3). The value
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of 7 is comparable with the inverse of the Einstein fre- 10 . . :
quency. In what follows, the temperatufie is scaled by T=0.0835
€lKg. ] ] 8 from fce structure -

We systematically study the normal and supercooled lig-
uids by constant-pressure MD simulatiori&ndersen’s 6L ]
method[15]) in a cubic cell with periodic boundary condi- S
tions. We use the velocity version of the Verlet algorithm %0 4l i
[16] and we take the time stept/7=0.07.

2
Ill. RESULTS i
A. Crystal structure 0 1

In this subsection, we derive the melting temperaflife (a) 0 1
and the glass-transition temperatdigof our Lennard-Jones
system. In order to determirig,, it is necessary to identify 10 T . .
the crystal structure belowT,,. In a one-component T=0.0835
Lennard-Jones system, the crystal structure is known to be 8 from CsCl structure-
the face-centered cubifcc) structure. On the other hand, in
a binary Lennard-Jones system, the type of the crystal struc- 6 .
ture depends on the ratio of diametets/ o, . Since we have §0
chosen the values af,/o; andm,/m; so that crystalliza- 4| 4
tion is bypassed in a binary system, the crystal structure is
not easily obtained by cooling liquids. As another way to oL i
determine a possible crystal structure of our binary Lennard-
Jones mixture, we perform MD simulations starting from the 0 .JTW PN L/
following three initial configurations at a low enough tem- 0 1 2 3
perature, say af =0.0835; that is(i) fcc structure obtained (b) rlc
by placing alternatively two kinds of layers composed of
face-centered square@,) cesium chloridg(CsC)) structure, 4 ' ' 7 008'35

and (i) sodium chloridg(NaCl) structure. Judging from the
fact that the melting temperatufg,, for a one-component 3k . from NaCl structure. —— |
Lennard-Jones system of an fcc structure is about 0.7,
T=0.0835 is considered to Hew in our binary system as
well. (It is worth noting here that, when parametersand

e for a one-component Lennard-Jones system are taken to be
appropriate for argori, in the reduced scale corresponds to
Tm=84 K while T=0.0835 toT=10 K.) The total number

of particles in each structure {§ N=500, (i) 432, and(iii)

512. In Figs. 1a), 1(b), and Ic), the total pair distribution 0
functionsg(r) versus interatomic distanaeare shown by 0
solid curves for the configurations resulting from these three ©

MD simulations, respectively, while the broken curve in Fig.
1(c) corresponds to a glass obtained by quenching a "qUi%o
from T=1.0017 toT=0.0835. (Note thatT: 1.0017 in the o0 initial configurations(a) the fcc structure(b) the CsCl struc-
reduced scale correspondstte- 120 K in the case of argon, ture and(c) the NaCl structure af =0.0835. The pair distribution

the temperature being considered to be high eno_ugh_for OYfinctiong(r) for a glass is also presented(ig). The arrows in(a),
purpose when compared #g,=84 K.) The arrows in Figs. () and(c) show the positions of the first eight nearest neighbors in
1(a), 1(b), and Xc), respectively, indicate the positions of the ap, fcc lattice, the first nine nearest neighbors in a CsCl lattice, and
first eight nearest neighbors in an fcc latt{ég. 1(a)], the  the first nine nearest neighbors in an NaCl lattice, respectively. In
first nine nearest neighbors in a CsCl lattj€ég. 1(b)], and  (b) and (c), the filled arrows represent the contributions from the
the first nine nearest neighbors in an NaCl latfie®y. 1(c)].  partial distribution functiongj;;(r) andg,,(r) and the open arrows
From Figs. 1a) and Xb), it is found that the crystal struc- denote the contributions from the partial distribution functions
tures of the fcc type and the CsCl type are stable. On theg,,(r) andg(r).

other hand, Fig. (t) ascertains that the NaCl structure is not

stable and that the structure obtained from our MD simulaculate the potential enerdy,,/N and volumeV/N per par-
tions is more like a glass than like a crystal. In this way, theticle at T=0.0835. The results are listed in Table | for the
study ofg(r) suggests that either an fcc or a CsCl structureabove-described two crystalline configurations as well as for
is a possible crystalline configuration for our model systema glass. From these results, it is obvious that the CsCl struc-
The next step, therefore, is to determine which of these twaure is most plausible out of the three configurations studied
configurations is more preferable. For this purpose, we calhere.

8()
n

FIG. 1. The pair distribution functiong(r) for the configura-
ns resulting from the MD simulations starting from the following
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TABLE |I. List of values of the potential energy per particle

0
Epot/N and the volume per partic/N at T=0.0835 for two crys- 10
talline configurations resulting from the MD simulations and for a
glass obtained by cooling liquids. .

3

Configuration Epot/N VIN \ﬁ‘;
fce structure -7.778 1.321 33
CsCl structure -8.141 1.285
glass -7.922 1.319

Now that a CsCl configuration is chosen as the crystal
structure of our system, our task is to deternilipeand T of
our system. Towards this end, we first heat this system from
T=0.0835 toT=1.0017 (liquid) with the average heating 10 ¢ — r

rate 3.2 10'° Ks 1. The specific volume&//N versusT for r ko=1.08 o ko=4.32
this heating process is plotted by filled circles in Fig. 2. From 5 ko=1.62 o k6=6.48
this figure, we see that the melting temperature is located N 6=2.16 = k6=9.72 -
aroundT,,=0.70. g ko=324 =

The liquid system al =1.0017 obtained as a result of the = 1
above-described heating process is then cooled down to e}
T=0.0835 with the average cooling rate %.00° Ks™ 1. -
The open circles in Fig. 2 show the specific volume versus éw
temperature in this cooling process. The glass-transition tem-
perature is roughly estimated from the value at the intersec- 0.1 '
tion of the extrapolations both from the typical liquidlike and 0.1 1 10
solidlike regions. The glass-transition temperatligethus
determined isT4=0.39. ®) O/ ®rmax

FIG. 3. (@) The imaginary part of the self-part of the complex
susceptlbllltyx(l)”(k,w) for various wave numbers dt=1.0017.

In this subsection, we clarify whether the structural relax-(b)x(” (k, )/ x\V" (K, omay) Versusw/ wmay for various wave num-
ation is anomalous or not in the normal liquid state above théers atT=1.0017. The solid curve represents the Debye suscepti-
melting temperature by analyzing our MD results. We calcu-bility.
late the self-part of the number density autocorrelation func-
tions F(“)(k t) and the imaginary part of the self-part of the 1 Ne _
complex susceptibilitieg'®” (k,w) relevant to the structural Fi&kt) = N, Z« (explik-[r(—r{(O)Ih, 4
relaxation. These physical quantities are defined as follows:

B. Structural relaxation

2 — Xs" (k@)= “’JO F{(k,t)cod wt)dt, (5)
8
heating o " -
cooling © . wherer ‘(t) denotes the position vector of partigleof spe-
18 1 ciesa at timet, k is a wave number vector ard=|k| is a
¢ wave number. The relaxation functicﬁi“)(k,t) contains in-

formation of the self-diffusion of particles.
. Let us first study the behavior of a liquid at a temperature
T=1.0017 which is as high ab=1.5T,,. The reason why
we start from a liquid at this temperature is that we like to
make it sure that a liquid isormal at high enough tempera-
ture. In Fig. 3a), the imaginary parts of the self-parts of the
complex susceptibilityy(")"(k,w) are shown for various
wave numbers at this temperature. Note that at this tempera-
1 ture, the system is in an equilibrium state. From this figure,
we find that the frequency of the peak becomes higher as the
T wave number becomes large. We show in Figh)3

1) 1) .

FIG. 2. The specific volum¥/N versus temperatur€ in heat- ( : (k, w)/X( ) (k,oma) as g fUI;ll(;‘,I,IOH Ofew/ wiax, Where
ing (filled circles and in cooling(open circles The solid lines ~ @max IS the frequency at whicl " (k,») has a peak. It
represent the extrapolations in order to determine the glass trands readily seen from this figure that scaling around
tion temperaturd . The melting temperature /,=0.70 and the @ = ®max holds at small wave numbers and the structural
glass transition temperatureT@zO.sg. relaxation is of the normal Debye type: i.e¢{""(k,w)/

VIN
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0 : berko=6.48, which corresponds to the wave number of the
107 r ko=6.48 (@) 1 main peak of the static structure factor. From this figure, we
can see the following facts(a) At high temperature
T=1.0017,x"""(k,w) has only one peak at the microscopic
frequency w7r~1). (b) As the temperature is reduced, the
width of the peak becomes broader towards the low-
frequency side even abovi,, which suggests the appear-
ance of an additional peak at the low-frequency sigg.
When the temperature is reduced beyadnd 0.5, an addi-
1074 Lo L s - tional peak appears at the low-frequency side. The appear-
1073 107 107! 10° ance of ‘the low-frequency pedkcan be clearly seen by
subtracting the Debye peak centered around the microscopic

ot frequencyQ(? from the calculatedy(""(k,w) [Figs. 4b)
10° - klc=6 48 TI=0 5843 | (®) 1 and el wnere
’ A kT 1/2
107! - Qﬁ1)=k(m—) : (6)
3 1
3
g; 107 1 These facts suggest that the structural relaxation becomes
= anomalous even abovg,. We also find from Figs. @) and
103 | -7 calculated susceptibility —— 4(c) that the frequency at the maximum position ofh&
Debye Suscep‘;’éﬁi‘;‘gﬁ;‘;ﬂe& o low-frequency pedkdecreases rather drastically as the tem-
1074 Lo L ' - perature decreases while the frequefidy’ at the maximum
107 1072 107! 10° position of the Debye susceptibility has a relatively weak
o1 dependence on the temperature as defined by(@gA re-
markable temperature dependence is one of the characteristic
100 [ ' ' ' © 1 f.eat.ures of the so-.ca}lled peak observed in supercooled
kc=6.48, T=0.5008 liquids. Therefore, it is expected that the peak at the low-
O ERTTIT frequency sid¢broken curves in Figs.(8) and 4c)] corre-
3 10 sponds to thex peak.
& In order to study the structural relaxation in the low-
= 107 T frequency region or in the long-time region in more detail,
= we analyze the self-parts of the number density autocorrela-
10° " calculated susceptibility  —— 4 tion functions. The self-parts of the number density autocor-
. " Debye Suscepfi’étirl?f;z(ioi;%egz. o relation functionF{}(k,t) are shown in Fig. 5 for various
10 : : ' : temperatures and wave numbers. In the time region

107 107 107! 10° (t/7>3.5) longer than the microscopic time scatére=1),
the self-partsF(Sl)(k,t) are well fitted by the stretched-
exponential function

FIG. 4. (a) The imaginary part of the self-part of the complex
susceptibility (V" (k,w) for various temperatures dto=6.48 t pY
which is the wave number of the main peak of the static structure F(sl)(k,t)~A(1)ex;{ _(W) } (t/I=>1), (7
factor. (b) At T=0.5843 and(c) at T=0.5008 (both for T
ko=6.48), the appearance of the peak (the broken curveis

(1) i i 1) i
ascertained by subtracting the Debye peak around the microscopY(\fhereT IS the relaxation time ang™™ is the stret_chlng
frequency () (the dotted curve from the total susceptibility parameter which represents the degree of stretching of the

xP"(k,w) (the solid curvg obtained from our simulations. relaxation. The fact that the long-time pgrtsl-_'cgl)(k,t) are
fitted by the stretched-exponential function is another char-
(L _ . _ _ _ acteristic feature of ther peak. Thus the relaxation in the

Xs (K, @mad=IM [(1-iw/wma) 7] (solid curve in this |ong-time region or in the low-frequency region is ascer-
figure) as is normally expected for a normal liquid above tained to be thex peak as is expected in the above.
Tm- On the other hand, at large wave numbers, the normal- we show the relaxation time as a function of the inverse
ized susceptibilitiesy$"”(k,0)/x{""(k,wmg) at high fre-  temperature in Fig. 6. In Figs. 7 and 8 are shown the stretch-
guencies are located under the solid curve. This fact indicatéag parameters as a function of temperature and as a function
that the structural relaxation at high frequenciefa&erthan  of the wave number, respectively. As seen in Fig. 6, Arrhen-
the Debye relaxation, and consequently a liquid i®t'per-  jus behavior is observed in the temperature region above
fectly normal” even at a high enough temperature Tm. From this fact, we can say that a liquid aboVg is

In the next place, let us study the behavior of a liquid atnormal not only in the ordinary thermodynamical sense but
temperatures lower thafi=1.0017. The imaginary parts of also in the sense that the relaxation time obeys a normal
the self-part of the complex susceptibiligtV”"(k,w) are  Arrhenius law. On the other hand, from Figs. 7 and 8, we
shown in Fig. 4a) for various temperatures at the wave num-find that(a) at small wave numberk¢=<2.16), the stretch-

T
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FIG. 5. The self-part of the number density autocorrelation functions scaledlb,yF(sl)(k,t)/A(l), for various wave numbers &)

T=1.0017,(b) T=0.8347,(c) T=0.6678, andd) T=0.5008. The solid curves represent the curves fitted by the stretched-exponential
function [Eq.( 7)].

ing paramete® is almost unity(b) at large wave numbers IV. SUMMARY AND DISCUSSION
(ko=2.16), BM) is less than unity even above,, (c) at
large wave numberskg=2.16), 8Y) decreases as the tem-
perature decreases at a given wave number and as the w
number increases at a given temperature. This (@cindi-
cates that the structural relaxation becomes slower as t

temperature decreases or as the wave number increases.

e o
| . ; =0.70 and the glass-transition temperattlige=0.39.
stretch(T)g parametefs?) atko = 6.48, where the Imaginary m(ii) At a temperaturd = 1.5T ,, which is cong?:iered to be
parts xs " (k,w) are shown for several temperatures in Fig. high enough, the imaginary part of the self-parts of the com-
4, are shown by filled diamonds in Fig. 7. It is clearly found plex susceptibility)((sl)”(k,w) versus frequency indicates

i 1) . > . .
tha_t the stretchmg paramet@*) is found to be _Iess than  ihat there exist deviations from the normal Debye relaxation
unity even at higher temperatures than the melting temperag; high frequencies.

In this article, we have studied the structural relaxation in
many-body systems such as a binary Lennard-Jones system
aty)g MD simulations.
(i) The crystal structure of our binary Lennard-Jones sys-
m is a CsCl structure. The melting temperature is

wre Ty, (iii) In a liquid at temperatureT between T, and
104 T T T U T 1
ko=1.08 -0— ko=6.48 -+~ 1.2 . . .
fomp 06 5T xo21adE L
10° | f5o5d el T 1 1.0 y
ko=432 -o-- o et
w 102 L - - ” _’_ ,,,,,,, - i 0.8 B ) T
=) - - =) T ko=1.62 -
* @ 067 A kG=2.16 -
10" + . & ko=3.24 =
- SR 04 r ko=4.32 -o-- 4
0 peee TR k0=6.48 -+--
T UTy i 02 r T,,=0.70 kG=9.72 -&--~ I
| ko=12.96 -
10—1 ] 1 |l 1 1 1 0 L 1 L
1 12 14 16 18 2 0.4 0.6 0.8 L0
ur T

FIG. 6. The relaxation timer" versus inverse temperature FIG. 7. The stretching parametgf? versus temperaturé for
1/T for various wave numbers. various wave numbers.
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should exist for which the relaxation becomes exponential.

1.2 In our MD simulations, this characteristic temperature is
1.0 T=1.0017 —o—- found to exist and increa_se a_ccording to the increase of the
T=0.9182 -o— wave number as shown in Figs. 7 and 8. The fact that the
0.8 7=0.8347 -0 anomalous relaxation appears even in the so-called normal
= 7=0.7513 = liquid was suggested experimentally by Ngai and Stfa8j.
= 06 L e T20.6678 -o-- | In this paper, we have confirmed this fact by means of the
A ;fggggg o systematic study by the computer simulations.
04 | Aep 1T _ Here we discuss the finite-size effect. The linear dimen-
sion R corresponding to the smallest wave number we stud-
02 e ied, i.e.,.ke=1.08, isR/oc=27w/ko~5.8, which is the larg-
10° 10! 10 est linear dimension we are concerned with in our

simulations. On the other hand, the linear system ¥iZ&in
the temperature region between=0.5 to T=1.0 is
VB35=9.0~9.9. Consequently, the finite-size effect is ex-
pected to be very small sinde<V?*3,

A most remarkable conclusion drawn from our study is
. ) o that the structural relaxation becomes anomalous not only in
1.5Tr,, the structural relaxation in the long-time region is of g \sercooled liquids but also in the normal liquid region. The
the stretched-exponential type in spite of the fact that the.ocusion achieved in this article indicates that the anoma-

system has several features characteristic of normal liquidg, s stryctural relaxation is closely related to the disordered
such as the Arrhenius behavior of the relaxation time and thg,¢re in a system.

thermodynamic behavior concerning the equations of state. gafore concluding this paper, let us mention that, as a
(iv) In the temperature region as describediin, i.e., in - naqel of the structural relaxation, we previously proposed a
the regionT,<T<1.5Ty,, the stretching paramet de-  one-pody picture: i.e., “random walks in restricted geom-
creases as the temperature reduces and as the wave NUMBE( and made detailed study of the relation between the
Increases. o o anomalous relaxation and the nature of disorder in systems
The results similar to our results presented in Fig. 7 havgyit restricted geometry20—23. Note also that Flesselles
also been indicated experimentally in the structural relaxznq Botet have investigated the stretched-exponential
ation in an ionic glass formefCa(NQs);]o.dK(NOs)los  anomalous relaxation analytically through random walks on

(CKN) (Fig. 3 in Ref.[17]) and in the mechanical relaxation 5 percolating network, modelizing the available phase space
in CKN (Fig. 6 in Ref.[18]); that is, we can read that the of 5 gisordered materidR3].

stretching parameter is less than unity even above the melt-
ing temperaturdl,, when we look at these experimental re-
sults closely. Moreover, in Reff18], Campbellet al. suggest
that another characteristic temperature, which is identified The authors are grateful for valuable discussions with Dr.
with the Griffith temperature in the spin-glass context,S. Gomi.

ko

FIG. 8. The stretching parametgf® versus wave numbés for
various temperatures.
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